Let $\Omega = B_1(0) \subset \mathbb{R}^2$. Given $g \in C(\overline{\Omega})$, we define

$$u(x) = \frac{1 - |x|^2}{2\pi} \int_{\partial\Omega} \frac{g(\sigma)}{|x - \sigma|^2} d\sigma. \tag{1}$$

Theorem 1. In Ω , u(x) is smooth and $\Delta u(x) = 0$ holds.

Proof. Since $|x - \sigma| > 0$ for $x \in \Omega$, $|x - \sigma|^{-2}$ is smooth in Ω . Hence, u(x) is smooth in Ω . Next, we recall the Green function

$$G(x,y) = -\frac{1}{2\pi} \left(\log|x - y| - \log\left(|x||y - \frac{x}{|x|^2}|\right) \right),\tag{2}$$

where $x^* = x|x|^{-2}$, and we calculate

$$\nabla_{y}G(x,y) = \frac{1}{2\pi} \left(\frac{x-y}{|x-y|^2} - \frac{x^*-y}{|x^*-y|^2} \right). \tag{3}$$

If $\sigma \in \partial B_1(0)$, then we have $|x^* - \sigma| = |x|^{-1}|x - \sigma|$. Hence,

$$\nabla_{y}G(x,\sigma) = \frac{1}{2\pi} \left(\frac{x-\sigma}{|x-\sigma|^{2}} - \frac{|x|^{2}(x^{*}-\sigma)}{|x-\sigma|^{2}} \right) = \frac{\sigma(1-|x|^{2})}{2\pi|x-\sigma|^{2}}.$$
 (4)

Since $\nu(\sigma) = \sigma$ on $\partial B_1(0)$, we have

$$u(x) = \int_{\partial\Omega} G_{\nu}(x,\sigma)g(\sigma)d\sigma,\tag{5}$$

which is harmonic in Ω .

Theorem 2. $u \in C(\overline{\Omega})$ and u = g on $\partial \Omega$.

Proof. We define

$$K(x,y) = \frac{1 - |x|^2}{2\pi |x - y|^2},\tag{6}$$

and express u by

$$u(x) = \int_{\partial B_1(0)} g(\sigma) K(x, \sigma) d\sigma. \tag{7}$$

We notice that if g(x) = 1 is a constant function then by the uniqueness u(x) = 1. Therefore,

$$1 = \int_{\partial\Omega} K(x, \sigma) d\sigma. \tag{8}$$

Given $\sigma_0 \in \partial \Omega$, we multiply $g(\sigma_0)$ to (8) and subtract from (8) to obtain

$$u(x) - g(\sigma_0) = \int_{\partial\Omega} K(x, \sigma)(g(\sigma) - g(\sigma_0))d\sigma. \tag{9}$$

Since $g \in C(\overline{\Omega})$, given $\sigma_0 \in \partial B_1(0)$ and $\epsilon > 0$, there exists $\delta > 0$ such that $|g(x) - g(\sigma_0)| \leq \frac{\epsilon}{2}$ holds if $|x - \sigma_0| \leq \delta$. Hence, (9) implies

$$|u(x) - g(\sigma_0)| \le \int_{\partial\Omega \cap B_{\delta}(\sigma_0)} K(x, \sigma) |g(\sigma) - g(\sigma_0)| d\sigma$$
 (10)

$$+ \int_{\partial\Omega\setminus B_{\delta}(\sigma_0)} K(x,\sigma) |g(\sigma) - g(\sigma_0)| d\sigma$$
 (11)

$$\leq \frac{\epsilon}{2} + 2 \max |g| \int_{\partial \Omega \setminus B_{\delta}(\sigma_0)} K(x, \sigma) d\sigma. \tag{12}$$

If $|x - \sigma_0| \le \frac{\delta}{2}$, then $|x - \sigma| \ge \frac{\delta}{2}$ holds for $\sigma \notin B_{\delta}(\sigma_0)$. Thus,

$$|u(x) - g(\sigma_0)| \le \frac{\epsilon}{2} + \frac{2 \max |g|}{(\delta/2)^2} (1 - |x|^2).$$
 (13)

Moreover,

$$|1 - |x|^2| = ||\sigma_0|^2 - |x|^2| = |(\sigma_0 - x)(\sigma_0 + x)| \le 2|\sigma_0 - x|. \tag{14}$$

Therefore, there exists some $\delta' \leqslant \frac{\delta}{2}$ such that if $|\sigma_0 - x| \leqslant \delta'$ then $|u(x) - g(\sigma_0)| \leqslant \epsilon$, namely u is continuous at $\sigma_0 \in \partial \Omega$ and $u(\sigma_0) = g(\sigma_0)$.